convergence analysis of spectral tau method for fractional riccati differential equations
نویسندگان
چکیده
in this paper, a spectral tau method for solving fractional riccati differential equations is considered. this technique describes converting of a given fractional riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. we use fractional derivatives in the caputo form. convergence analysis of the proposed method is given and rate of convergence is established in the weighted $l^2-$norm. numerical results are presented to confirm the high accuracy of the method.
منابع مشابه
Convergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملConvergence Analysis of Spectral Tau Method for Fractional Riccati Differential Equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given and rate of convergence ...
متن کاملFractional Riccati Equation Rational Expansion Method For Fractional Differential Equations
In this paper, a new fractional Riccati equation rational expansion method is proposed to establish new exact solutions for fractional differential equations. For illustrating the validity of this method, we apply it to the nonlinear fractional Sharma-TassoOlever (STO) equation, the nonlinear time fractional biological population model and the nonlinear fractional foam drainage equation. Compar...
متن کاملThe Riccati Sub-ODE Method For Fractional Differential-difference Equations
In this paper, we are concerned with seeking exact solutions for fractional differential-difference equations by an extended Riccati sub-ODE method. The fractional derivative is defined in the sense of the modified Riemann-liouville derivative. By a combination of this method and a fractional complex transformation, the iterative relations from indices n to n ± 1 are established. As for applica...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملThe Müntz-Legendre Tau Method for Fractional Differential Equations
The principle result of this paper is the following operational Tau method based upon Müntz-Legendre polynomials. This methodology provides a computational technique for numerical solution of fractional differential equations by using a sequence of matrix operations. The main property of Müntz polynomials is that fractional derivatives of these polynomials can be expressed in terms of the same ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 40
شماره 5 2014
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023